Climate Change: The Move to Action (AOSS 480

Climate Change: The Move to Action (AOSS 480

Climate Change: The Move to Action (AOSS 480 // NRE 480) Richard B. Rood Cell: 301-526-8572 2525 Space Research Building (North Campus) [email protected] http://aoss.engin.umich.edu/people/rbrood Winter 2010 April 20, 2010 Class News Ctools site: AOSS 480 001 W10 On Line: 2008 Class Reference list from course Rood Blog Data Base

Surprise Presentation! Climategate(s) The Past, Present, and Future of Climate Data BOOK RELEASE EVENT: This talk marks the appearance of A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming (MIT Press). Copies available for sale. Paul N. Edwards UM-School of Information Tuesday, 20 April 2010 4:005:30 pm 1014 Tisch Department of History Projects Final presentation discussion; April 22, 12:00 4:00, Place 1024 Dana (Our classroom)

Lunch at 12:00, presentations start promptly at 12:30. Usually arrives a little early. Presentation order: Near-term solutions Write, call, meet before presentation. Seeking Project Happiness Time April 22rd: 12:30-4:00. Lunch at 12:00. 1024 Dana Presentation: Total time for presentation: 30 minutes / Aim for 20 & 10 My goal, here, is something like a real world experience. Therefore, first get the presentation right. Paper: There should be an accompanying narrative to the presentation. This should include references. Minimally: Narrative is description of the presentation. Target: Narrative in the spirit of executive summary, or white paper that

the receiver of the presentation can take away and carry forward. Needs Abstract. 10 pages is a good target. If longer than 10 pages Executive Summary Narrative Summary Due April 29 If you want to write more it is fine. You should feel like you have done a good job, in the time that you have. More Project Guidelines This is Different from a traditional research paper Needs to be integrated What I will look for in assessing the quality of the reports:

Review / inventory. Have you done a good job of reviewing the state of knowledge of the problem? Have you hit key references? Do you provide additional references that allows deeper entry into the field. Separating knowledge / conjecture / belief. Have you done an objective evaluation of the information that you have gathered from different sources? Have you considered the quality and nature of your sources? Identify externalities. Have you identified those issues which impact the ability of you to solve your problem. Have you prioritized which of these are important and require more attention. Which are unimportant or unmanageable. Clear synthesis and analysis. Can you rationalize contradictions and differing priorities that are represented in your problem? Recommendations and conclusions. Can you tie the pieces together well enough to represent a course of action, or an evaluation of several courses of action. Todays Lecture Making the argument and addressing the

political arguments that fuel selective doubt Scientific method Conservation principle Climate Science in Six Viewgraphs Observational Evidence / Attribution Response Space What do we do? Science Scientific Method 1 Elements of the scientific method Observations of some phenomenon Identification of patterns, relationships and the generation of suppositions, followed by hypotheses In principle, hypotheses are testable: Experiments: cause and effect Prediction instead of experiments?

Development of constructs, theory, which follow from successful hypothesis. Predict behavior, what the next observation might look like? Development of tests, experiments that challenge the hypotheses and predictions. Validate or refute theory and elements from which the theory is constructed. PA1: Science Scientific Method 2 Science is a process of investigation The results of scientific investigation are the generation of

Knowledge within a prescribed levels of constraints Uncertainty: How sure are we about that knowledge? Quantitative and Qualitative Science does not generate a systematic exposition of facts Facts are, perhaps knowledge, whose uncertainty is so low, that we feel certain. Theories develop out of tested hypotheses. Theory is NOT conjecture Theory is subject to change, due to testable challenges Science requires validation Requires that hypotheses and theories are testable Requires transparency so that independent investigators can repeat tests and develop new tests. Conservation Principle

Idea that certain quantities are conserved. We consider, primarily, energy and carbon dioxide Need to be careful about defining our system How a quantity changes with time = Production of the quantity -

Loss of the quantity + Exchanges of the quantity Its a counting problem. Think of money Changes in the sun Balance of Energy

Things that change reflection Things that change absorption If something can transport energy DOWN from the surface. Balance: An important concept When we talk about climate and climate change we are talking about a system in balance. What we are concerned with is how does this balance change when something is changed in the system. Does it return to same balance - negative feed back sort of

biological, Gaia . Does it go to a different state positive feed back perhaps a different balance runaway? Analogy to market economies - and businesses Often how things change on the margins, rather than whether or not the change is large in an absolute sense. CO2 is a small change in an absolute sense, and the surface energy change from CO2 is also small in an absolute sense Climate Science in Six Slides - Approximately The Greenhouse Effect PA2: Spencer Wearts The Discovery of Global Warming

SUN Based on conservation of energy: If the Earth did NOT have an atmosphere, then, the temperature at the surface of the Earth would be about -18 C ( ~ 0 F). Earth But the Earths surface temperature is observed to be, on average, about 15 C (~59 F). Due to primarily water and carbon dioxide. This greenhouse effect in not controversial. This surface temperature, which is higher than

expected from simple conservation of energy, is due to the atmosphere. The atmosphere distributes the energy vertically; making the surface warmer, and the upper atmosphere cooler, which maintains energy conservation. We are making the atmosphere thicker. PA3: Increase of Atmospheric Carbon Dioxide (CO2) (Keeling et al., 1996) Primary

increase comes from burning fossil fuels coal, oil, natural gas Data and more information Web links to some CO2 data NOAA/ESRL Global Monitoring Division Carbon Cycle Greenhouse Gas Mauna Loa Carbon Dioxide Carbon Dioxide Information Analysis Cent er Recent Greenhouse Gas Concentrations

NOAA/PMEL CO2 and Ocean PA4: 460 ppm CO2 2100 Bubbles of gas trapped in layers of ice give a measure of temperature and carbon dioxide 390 ppm CO2 2010 350,000 years of Surface Temperature and Carbon Dioxide (CO2)

at Vostok, Antarctica ice cores Some References Vostok and CO2 Role of Ocean in Reversal During this period, temperature and CO2 are closely related to each other Its been about 20,000 years since the end of the last ice age There has been less than 10,000 years of history recorded by humans (and it has been relatively warm) PA5: Lets look at just the last 1000 years Surface temperature and CO2 data from the

past 1000 years. Temperature is a northern hemisphere average. Temperature from several types of measurements are consistent in temporal behavior. Medieval warm period Little ice age Temperature starts to follow CO2 as CO2 increases beyond approximately 300 ppm, the value seen in the previous graph as the upper range of variability in the past 350,000 years. The 20th Century How do we test our models? How do we attribute observed warming to the industry of humans?

One thing we do is make predictions (simulations, hindcasts) of the observations of past behavior Natural Forcing: Solar variability, volcanoes, pre-industrial CO2 Anthropogenic Forcing: Industrial CO2, Changes in Land Use, Other Greenhouse Gases (N2O, CH4, CFCs) It is only when anthropogenic forcing is calculated can we explain the warming observed to begin in the late 20th century. Some References Intergovernmental Panel on Climate Change Fourth Assessment Report

Projections for the next 100 years. Intergovernmental Panel on Climate Change Fourth Assessment Report Conclusions from the Scientific Investigation of the Physical Climate The Earth has warmed, and most of that warming is due to the enterprise of humans. The Earth will continue to warm. Sea level will rise. The weather will change. Lets remember the ozone smoking gun. Is there a smoking gun for climate change? Is there some impact of climate change that raises urgency and accelerates action? Observational Evidence Keep returning to the observations

Coherent and convergent evidence Jump to attribution Jump to ecosystems Observed Temperature Anomaly in 2008 http://data.giss.nasa.gov/gistemp/2008/ See Also: Osborn et al., The Spatial Extent of 20th-Century Warmth in the Context of the Past 1200 Years, Science, 311, 841-844, 2006 Jump to attribution Jump to ecosystems IPCC 2007: The last

~100 years Jump to attribution Jump to ecosystems IPCC Ice Sheet Accumulation Jump to attribution Jump to ecosystems 20m Borehole Temperature Trends in Alaska Jump to attribution Jump to ecosystems Hinzman et al 2005

Changes in planting zones Jump to attribution Length of Growing Season Jump to attribution From Ranga B. Myneni, Boston University Changes in the Amplitude of the Keeling Curve (Keeling et al, 1996) Amplitude has increased 40% in Alaska, Canada

Amplitude has increased 20% in Hawaii The phase, start of the decrease, start of the growing season, has moved forward 7 days. Jump to attribution Attribution Coherent and convergent observation evidence. Spatial, temporal, and correlated behavior as predicted by theory and models

Jump to fingerprinting Predictions of the 20th Century How do we test our models? How do we attribute observed warming to the industry of humans? One thing we do is make predictions (simulations, hindcasts) of the observations of past behavior Natural Forcing: Solar variability, volcanoes, pre-industrial CO2 Anthropogenic Forcing: Industrial CO2, Changes in Land Use, Other Greenhouse Gases (N2O, CH4, CFCs) It is only when anthropogenic forcing

is calculated can we explain the warming observed to begin in the late 20th century. Some References Intergovernmental Panel on Climate Change Fourth Assessment Report Observed Temperature Anomaly in 2008 http://data.giss.nasa.gov/gistemp/2008/ See Also: Osborn et al., The Spatial Extent of 20th-Century Warmth in the Context of the Past 1200 Years, Science, 311, 841-844, 2006 Fingerprint detection explained pictorially. Thanks to Ben Santer for Content! Time-varying observed patterns

MODEL: PCM EOF: 1 EXPT: B004.10-cntrl EV: 27.40% NT: 300 MONTHS Time-varying control run patterns Dimensionless 29/03/04 16:32:26 MODEL: PCM EOF: 1 EXPT: B004.10-cntrl EV: 27.40% NT: 300 MONTHS Dimensionless MODEL: PCM EOF: 1 EXPT: B004.10-cntrl EV: 27.40% NT: 300 MONTHS 29/03/04 Dimensionless MODEL: PCM EOF: 1 EXPT: B004.10-cntrl EV: 27.40% NT: 300 MONTHS

Dimensionless MODEL: PCM EOF: 1 EXPT: B004.10-cntrl EV: 27.40% NT: 300 MONTHS t=1 t=2 t=3 t=4 t=n -1 -0.6 -1 -0.8 -1.2

-0.2 -0.6 -0.4 -1 -0.8 -1.2 -0.6 -0.4 -1 -0.8 -1.2 -0.2 -0.2 -0.6 -0.4

-0.8 0.6 0.8 0 1 1.2 0.6 0.8 0.2 0.4 0 Model fingerprint -1.5

1 1.2 0.2 0.4 0 -0.2 -0.4 1 0.6 0.8 0.2 0.4 0 Projection onto model

fingerprint -1.2 0.6 0.2 0.4 0 -0.6 -0.4 -1 -0.8 -1.2 0.2 -0.2 t=1

t=2 t=3 t=4 t=n -1.25 0.4 -0.75 -1.25 -1.25 1 1.2 0.8

-0.75 -0.5 -1 -1.5 -1.5 1.2 -0.25 -1 Signal and noise time series -0.25

-0.25 -0.5 0.75 0 1.25 1.5 1 0.75 0.25 0.5 0

16:32:26 1.25 1.5 1 0.25 0.5 0 16:32:26 29/03/04 1.25 0.75 0.25 0.5

0 -0.75 -0.5 -1 0.75 0.25 0.5 0 -0.75 -0.5 -1 -1.25

-1.5 0.25 -0.25 16:32:26 29/03/04 Dimensionless -0.25 -0.75 -0.5 -1 -1.5 1 1.2

0.6 0.8 -1.25 16:32:26 29/03/04 1.25 1.5 1 0.75 1.25 1.5 1

5 Projection 1.onto model fingerprint 0.5 1 Signal-to-noise ratios -1 -1.2 -0.6 -0.8 -0.2 -0.4

0.2 0 0.6 0.4 1 0.8 1.2 Searching for fingerprints of human activities in the worlds oceans

Initial work by Syd Levitus and colleagues showed an increase in the heat content of the oceans over the second half of the 20th century (Levitus et al., 2001, Science) Subsequent research by Tim Barnett and colleagues identified a human fingerprint in the observed ocean heat content changes (Barnett et al., 2001, Science) Thanks to Ben Santer for Content! Fingerprinting in the ocean: Warming

of the North Atlantic over 1955-99 Thanks to Ben Santer for Content! Barnett et al., Science (2005) Fingerprinting in the ocean: Warming of the worlds oceans over 1955-99 Thanks to Ben Santer for Content! Barnett et al., Science (2005) Human-caused fingerprints have been identified in many different aspects of the climate system Thanks to Ben Santer for Content!

Surface specific humidity Water vapor over oceans Tropospheric temperatures -0.5 Ocean temperatures -0.6 -0.3 -0.4 -0.1

0.1 -0.2 0.3 0 Stratospheric temperatures 0.5 0.2 -1

-0.6 Tropopause height 0.4 0.6 -1.2 -0.8 -0.2 -0.4 0.2

0.6 0 1 0.4 0.8 Sea-level pressure Atmospheric temperature 50 18 100

14 200 Zonal-mean rainfall Near-surface temperature 10 300 6 500 2

850 60N 45N 30N -1.5 -1.8 15N -0.9 -1.2 0 -0.3

-0.6 15S 0.3 0 30S 45S 0.9 0.6 Continental runoff

60S 1.5 1.2 1.8 1.2 Response Mitigation Adaptation Geoengineering Science, Mitigation, Adaptation Framework Its not an either / or argument.

Adaptation is responding to changes that might occur from added CO2 Mitigation is controlling the amount of CO2 we put in the atmosphere. Stabilization Controlling emissions to stabilize the concentration of CO2 in the atmosphere at some value. Conclusion: Need to act soon. Basic constraint on carbon policy 1990 by 2020 Lets visit the wedges Mignone: Stabilization and Policy Timing

If start in 2008 at 1% per year reduction, then we will limit CO2 to ~ 475 ppm Each year delayed is an increase of 9 ppm. Impacts An important place to remember that we are looking at a system that is in balance Climate Ecosystems Humans Agriculture, public health, water resources, etc. Remember this curve BAD

GOOD Temperature (other environmental parameter) Carry away from impact? Existing problem with existing system to address the problem Some good, some bad Highly localized Strongly dependent on extreme events, not the average Hence want to know how extreme events will change Technological and engineering solutions usually evident or technological development is feasible Not clearly and distinctly addressed by efforts to mitigate

greenhouse gas emissions Motivator for Kyoto like policy? Practical Response Space Past Emissions Princeton Carbon Mitigation Initiative The Stabilization Triangle Princeton Carbon Mitigation Initiative The Wedge Concept Princeton Carbon Mitigation Initiative

Stabilization Princeton Carbon Mitigation Initiative Princeton Carbon Mitigation Initiative McKinsey 2007 Policy Response Space F1A n e i ic eff

GDP ENERGY PRODUCTION . POLLUTANT cy F2A FiA FUEL SOURCES F2c

F1c Fic [CO2 ] PCO2 LCO2 t ABATEMENT A1 A2 Ai COST GAP

Elements of environmental pollutant market SHARES OF POLLUTANT CREDITS The abatement that we talk about Terrestrial sink? This is fragile, limited, and there is growing evidence that it does not grow to address the problem. That is carbon fertilization is less effective than posed. Oceanic sink? Evidence of ocean taking up less. Abatement

What are the forms of abatement? Sequestration to keep carbon dioxide out of the atmosphere. Some engineered way to remove carbon dioxide from the atmosphere. Think about the energy of this requires something biological to use the Sun.? Policy response space Must put a cost on carbon dioxide pollution Must value efficiency An integrated picture? Towards an integrated picture ECONOMIC ANALYSIS CLIMATE SCIENCE

KNOWLEDGE ENERGY IMPACTS LAW CONSUMPTION POPULATION INTEGRATED IIMPACTS UNCERTAINTY Fragmented

Policy PROMOTES / CONVERGENCE OPPOSES / DIVERGENCE ? Need for a portfolio of solutions What is short-term and long-term? Pose that time scales for addressing climate change as a society are best defined by human dimensions. Length of infrastructure investment, accumulation of wealth over a lifetime, ... LONG SHORT Election

time scales ENERGY SECURITY CLIMATE CHANGE ECONOMY 0 years 25 years There are short-term issues important to climate change. 50 years 75 years

100 years We arrive at levels of granularity WEALTH Need to introduce spatial scales as well Sandvik: Wealth and Climate Change LOCAL TEMPORAL NEAR-TERM LONG-TERM GLOBAL SPATIAL

Small scales inform large scales. Large scales inform small scales. Projects Final presentation discussion; April 22, 12:00 4:00, Place 1024 Dana (Our classroom) Lunch at 12:00, presentations start promptly at 12:30. Usually arrives a little early. Presentation order: Near-term solutions Write, call, meet before presentation. Thank You: Fill out online evaluation forms

PA1: Just a Theory A common statement is that greenhouse gas is just a theory, equating theory with conjecture. Theory is not conjecture, it is testable. Theory suggests some amount of cause and effect a physical system, governed by quantitative conservation equations. Theory is not fact, it can and will change. Need to consider the uncertainty, and the plausibility that the theory might be wrong. Often it is stated in this discussion that gravity is only a theory. True, and the theory of gravity is a very useful theory, one put forth by

Newton. True, we dont exactly understand the true nature of the force of gravity, there are why questions. Formally, Newtons theory of gravity is incorrect thats what Einstein did. Still, it is a very useful and very accurate theory, that allows us, for example, to always fall down and never fall up and go to the Moon with some confidence. Return: Scientific Method PA2: Greenhouse Effect This is generally not a strongly argued point. Warming of the surface due to greenhouse gases make the planet habitable. Habitable? Water exists in all three phases?

Water and carbon dioxide and methane are most important natural greenhouse gases. Often a point of argument that water is the dominant gas, so traces of CO2 cannot be important. Water is dominant often said 2/3 rds of warming. Because there is so much water in the ocean, the amount of water vapor in the atmosphere is largely determined by temperature. (The relative humidity.) This is where it is important to remember the idea of balance, the climate is in balance, and it is differences from this balance which we have co-evolved with that are important. Burning fossil fuels is taking us away from this balance. It is like opening or closing a crack in the window it makes a big difference.

Return: Greenhouse Effect PA3: What happens to this CO2 A new political argument: CO2 from fossil fuels is small compared to what comes from trees and ocean. True. But a lot goes into trees and oceans as well. So it is the excess CO2, the CO2 on the margin that comes from fossil fuel burning. Not all of this goes into the trees and oceans, and it accumulates in the atmosphere. There are 8.6 Petagrams C per year emitted 3.5 Pg C stay in atmosphere 2.3 Pg C go into the ocean 3.0 Pg C go into the terrestrial ecosystems Terrestrial ecosystems sink needs far better quantification Lal, Carbon Sequestration, PhilTransRoySoc 2008

Its a counting problem! One of our easier ones. Return: CO2 PA4: Cycles Some say that there are cycles, they are natural, they are inevitable, they show that human have no influence. Cycles? yes natural? Yes Inevitable There are forces beyond our control We can determine what causes cycle; they are not supernatural Greenhouse gases change Life is involved ocean and land biology Humans are life This is the time humans release CO2

Return to Ice Age Cycles PA4: Cycles CO2 and T At the turn around of the ice ages, temperature starts to go up before CO2; hence, T increase is unrelated to CO2 Need to think about time and balance here There are sources of T and CO2 variability other than the radiative greenhouse gas effect. If CO2 increases in the atmosphere, there will be enhanced surface warming, but is the increase large enough to change temperature beyond other sources of variability? If T increases, there could be CO2 increases associated with, for instance, release from solution in the ocean CO2 increases could come from burning fossil fuels, massive die off of trees, volcanoes have to count, know the balance. Return to Ice Age Cycles

PA4: Cycles: Ice Ages In 1975 scientists were predicting an ice age. Now warming. You have no credibility, why should we believe you now. In 1975, small number of papers got a lot of press attention. 2010 Think scientific method Observations, observations, observations Improved theory, predictions, cause and effect Results reproduced my many investigators, using many independent sources of observations Consistency of theory, prediction, and observations Probability of alternative description is very small. Return to Ice Age Cycles PA5: Hockey Stick

This is the hockey stick figure and it is very controversial. Quality of data, presentation, manipulation, messaging. Rood blog Nature on Hockey Stick Controversy There are some issues with data, messaging, emotions of scientists here, but the data are, fundamentally, correct. Return to last 1000 years PA5: Hockey Stick: Science But place the surface temperature record of the hockey stick in context using the scientific method. Reproduction of results by independent researchers, through independent analyses

Verification of results in other types of observations sea level rise, ocean heat content, earlier start of spring Consistency of signals with theory upper tropospheric cooling Evaluation of alternative hypotheses Return to last 1000 years PA5: Hockey Stick: Temperature source There has developed a discussion between those who believe in surface temperature data and those who believe in satellite data. Scientifically, it should not be a matter of belief, but validation. Each system has strengths and weaknesses. Differences should be reconciled, not held as proof of one over the other. Surface: Issues of how sited, representative, urban heat island

If ignored (wrong), then data flawed If taken into account (right), then data are manipulted Satellite data objective and accurate? Read the literature! Took years to get useful temperature. Every satellite is different, calibrated with non-satellite data And ultimately: Scientific method Reproduction of results by independent researchers, through independent analyses Verification of results in other types of observations Consistency of signals with theory Evaluation of alternative hypotheses Return to last 1000 years

Some Geoengineering figures Geoengineering Schematic Keith_Geoengineering_Nature_2001 Keith_Geoengineering_History_Prospect_AnnRevEneEnvir_2000 An incomplete history of Geo-engineering Good reviews Keith_Geoengineering_History_Prospect_AnnRevEneEnvir_200 0 Spencer Weart History In 1905 Arrhenius discussed a virtuous circle in which CO 2 emissions would warm the climate, changing the northern limits of agriculture and enhancing productivity.

Cloud seeding efforts started in 30s and 40s John Von Neumann deliberate modification of weather for civilian and military use 1953 Presidents Advisory Committee on weather control with focus on rainmaking 1955 in interview in Fortune magazine JVN speculated that Microscopic layers of colored matter spread on an icy surface, or in the atmosphere above one, could inhibit the reflection-radiation process, melt the ice, and change the local climate Budyko in Soviet Union modification to improve agriculture and Geoengineering history II By 1970s US gov spending $20M/yr on weather modification research. Substantial amounts also spent in USSR on this. Circa 1974, ... Budyko calculated that if global warming ever became a serious threat, we could counter it with just a few airplane flights a day in the stratosphere, burning sulfur to make

aerosols that would reflect sunlight away. 1977, National Academy Report on Geoengineering, ... Lamb, Hubert H. (1971). "Climate-Engineering Schemes to Meet a Climatic Emergency." Earth-Science Reviews said "an essential precaution is to wait until a scientific system for forecasting the behavior of the natural climate... has been devised and operated successfully for, perhaps, a hundred years. 1992, National Academy Report on Mitigation and Adaptation Gail_Geoengineering_IEEE_2007 Gail_Geoengineering_IEEE_2007

Recently Viewed Presentations

  • RFM Analysis - Kean University

    RFM Analysis - Kean University

    RFM Analysis helps companies decide which customers to give select offers and promotional items. It is a way for companies to find ways to increase customer spending. Companies can use it to target lost customers and give them incentives to...
  • 2 1/28/20 CAREER PATHWAYS FOR YOUTH GRANTEE ORIENTATION

    2 1/28/20 CAREER PATHWAYS FOR YOUTH GRANTEE ORIENTATION

    Each pathway offers opportunities for participants to earn skills in financial literacy, critical thinking, social perceptiveness, active listening, professional writing among other specializes skills in each potential field of construction, manufacturing, hospitality, health care and financial services.
  • Communicating with faculty & staff, the media and the community

    Communicating with faculty & staff, the media and the community

    The next step, after generating your self-assessment, is getting your Chair's input. This will frequently although not always take the form of a face-to-face meeting, and in some larger departments, you might be meeting with a division director rather than...
  • Chapter 1 A Perspective on Human Genetics

    Chapter 1 A Perspective on Human Genetics

    Chromosome Painting Using Fluorescent Dyes DNA sequences attached to fluorescent dyes The sequences attach to the chromosome and "paint" specific regions Using several different DNA sequences and fluorescent dyes produces a unique pattern for each of the 24 types of...
  • Repektovanie detskch prv Modul . 2: vod do

    Repektovanie detskch prv Modul . 2: vod do

    Rešpektovanie detských práv Modul č. 2: Úvod do vývinu dieťaťa a komunikácie Tento projekt je spolufinancovaný programom Európskej únie Základné práva a občianstvo.
  • This is a test of this font THIS IS A TEST OF THIS FONT

    This is a test of this font THIS IS A TEST OF THIS FONT

    If you select a flight and it has this yellow exclamation point icon, the system is notifying you that your flight is not within policy. The system will still allow you to book your flight, however, it will require you...
  • Measure What You Value …Value What You Measure

    Measure What You Value …Value What You Measure

    Claim. Budget recap. Enrollment projections. Grocery/Produce velocity. Inventory. Commodities. Information Resources: Best Practices. DETERMINE YOUR GOAL. Increase breakfast participation . ... Measure what you value. Value what you measure. One step at a time.
  • Matilda - The College of New Jersey

    Matilda - The College of New Jersey

    Miss Honey gets to move back into her old house and is happy. One day, Matilda's parents said they were moving to Spain. They needed to run away because Mr. Wormwood was a crook and in trouble with the law.