Size Exclusion Chromatography Presented by Khairul Kibria MS

Size Exclusion Chromatography Presented by Khairul Kibria MS

Size Exclusion Chromatography Presented by Khairul Kibria MS in Biotechnology Protein Chemistry course Swedish university of Agricultural Sciences Uppsala, Sweden Background Size exclusion chromatography is used primarily

for analytical assays and semi-preparative purifications It is not commonly used for process scale work due to the low capacity of the size exclusion mode Tosoh Corporation (Toyo Soda) introduced its first SEC columns in 1973 and has continuously added new column types and instruments since then. The technique can be applied in two distinct ways: Group separations: components of a sample are separated into two

major groups according to size range High resolution fractionation of biomolecules: Components of a sample are separated according to differences in their molecular size Introduction Size-exclusion chromatography (SEC) is a chromatographic method in which molecules in solution are separated by their size, and in some cases molecular weight It is usually applied to large molecules or macromolecular

complexes such as proteins and industrial polymers Fig 1. A size exclusion column Theory background gel filtration medium is packed into a column to form a packed bed The medium is a porous matrix in the form of spherical particles that have been chosen for their chemical and physical stability, and inertness The liquid inside the pores is the stationary phase and this

liquid is in equilibrium with the liquid outside the particles called to as the mobile phase Group separation group separation mode to remove small molecules from a group of larger molecules and as a fast, simple solution for buffer exchange Small molecules such as excess salt (desalting) or free labels are easily separated is often used in protein purification schemes for desalting and buffer exchange

Fig.2 Typical chromatogram of a group separation High resolution fractionation Gel filtration is used in fractionation mode, uses porous particles to separate multiple components in a sample on the basis of differences in their size Molecules that are smaller than the pore size can enter the particles and therefore have a longer path and longer transit

time than larger molecules that cannot enter the particles Fig 3. Schematic of a sizeexclusion chromatography column Fig 4. Schematic of a size-exclusion chromatography column Mechanism of action samples that contain few components or partially purified by other chromatography techniques will give the best result

Single buffer system, packed bed(chemically and physically stable and inert), pore size in stationary phase separates proteins according to their molecular weight Elution of Proteins: one buffer used for both loading and elution of the sample Molecules larger than the pore size can not enter the pores and elute together as the first peak in the chromatogram Molecules that can enter the pores will have an average

residence time in the particles that depends on the molecules size and shape Different molecules therefore have different total transit times through the column Molecules that are smaller than the pore size can enter all pores, and have the longest residence time on the column and elute together as the last peak in the chromatogram Fig. 5. Theoretical chromatogram of a high resolution fractionation (UV absorbance)

Principle One requirement for SEC is that the analyte does not interact with the surface of the stationary phases Differences in elution time are based solely on the volume the analyte A small molecule that can penetrate every corner of the pore system of the stationary phase (where the entire pore volume and the interparticle volume ~80% of the column volume) and will elute late A very large molecule that cannot penetrate the pore system only the interparticle volume (~35% of the column volume) and will elute earlier

when this volume of mobile phase has passed through the column The underlying principle of SEC is that particles of different sizes will elute (filter) through a stationary phase at different rates. Particles of the same size should elute together Analysis The collected fractions are often examined by spectroscopic techniques to determine the concentration of the particles eluted Common spectroscopy detection techniques are refractive index (RI) and ultraviolet (UV)

For molecules, which can enter the beads, there is an inverse logarithmic relationship between the size of the molecule and the volume eluted from the column. Finally, can use a standard curve to estimate the molecular weight Commercially avaiable columns The typical column diameters are 7.58mm for analytical columns and 2225mm for (semi)preparative columns; usual column lengths are 25, 30, 50, and 60 cm The packings are based on either porous silica or semirigid

(highly crosslinked) organic gels, in most cases copolymers of styrene and divinylbenzene For example: TSKgel GFC columns for protein analysis (TSKgel SWtype columns are silica-based) 125 pore size for analysis of small proteins and peptides 250 pore size for most protein samples 450 pore size for very large proteins and nucleic acids Commercially available columns and properties: Product Superdex Peptide Superdex 75

Superdex 200 Superdex 30 prep grade Superdex 75 prep grade Superdex 200 prep grade pH stability Long term: 114 Short term: 114 Long term: 312 Short term: 114 Long term: 312

Short term: 114 Long term: 312 Short term: 114 Long term: 312 Short term: 114 Long term: 312 Short term: 114 Particle size 1315 mm 1315 mm

1315 mm 2244 mm 2244 mm 2244 mm Superdex 200 - the molecular weight of the protein of interest is unknown Superdex 200 or Superdex 200 prep grade - especially suitable for the separation of monoclonal antibodies from dimers and from contaminants of lower molecular weight Advantages

Unlike ion exchange or affinity chrom. molecules do not bind to the medium so buffer composition does not directly affect resolution is well suited for biomolecules that may be sensitive to changes in pH, conc. of metal ions or co-factors and harsh environmental conditions conditions can be varied to suit the type of sample or the requirements for further purification, analysis or storage without altering the separation Can be used after any chrom. tech. bcz components of any elution buffer will not affect the final separation

Thank you

Recently Viewed Presentations

  • Presentación de PowerPoint

    Presentación de PowerPoint

    Arial MS Pゴシック Trebuchet MS Wingdings 3 Wingdings Faceta 1_Faceta 2_Faceta 3_Faceta 4_Faceta 5_Faceta 6_Faceta Presentación de PowerPoint Safety in Biological Sciences Laboratories General Safety Precautions Presentación de PowerPoint General Precautions General Precautions General Safety Precautions General Safety Precautions General...
  • Awaken to Abundance! PT II

    Awaken to Abundance! PT II

    Parable of the talents. Mt 25:19-21 "19 After a long time the lord of those servants came and settled accounts with them. 20 So he who had received five talents came and brought five other talents, saying, 'Lord, you delivered...
  • God's Mercy

    God's Mercy

    "God's mercy is his tenderhearted, loving compassion for his people. It is his tenderness of heart toward the needy. If grace contemplates humans as sinful, guilty, and condemned, mercy sees them as miserable and needy." - Millard Erickson2
  • Electron Arrangement in an Atom

    Electron Arrangement in an Atom

    Electron Configuration The ways in which electrons are arranged into various orbitals around the nuclei of atoms. To find electron configuration we rely on three rules: The aufbau principle The Pauli exclusion principle Hund's Rule Aufbau Principle Electrons occupy the...
  • APES year in review - Weebly

    APES year in review - Weebly

    Alfisols- weathered forest soil, not deep, but developed OAE+B typical of most temperate forest biome. Need fertilizer for agriculture. Aridsols- dry lands + desert, lack of vegetation, lack of rain → unstructured vertically, irrigation leads to salinization b/c of high...
  • C-Notes: Cell Specialization and Organization

    C-Notes: Cell Specialization and Organization

    Plant Cells have Cell Walls! Pressure of the Cell Membrane against the cell wall. The . cell wall. helps . push back . so that . water can't. cause the cell to . burst. as in animal cells. When ....
  • 5th Grade Band Ms. Emily Bisbee, Director Program

    5th Grade Band Ms. Emily Bisbee, Director Program

    5th Graders. Clay Anderson Sami Anderson Jaydon Baker Charlotte BergBryce Bickerstaff Brandt Boekhout. Ashley Boer KarleeBosAustin De Noble . Sydney EbelMaddie Elbert NicholleEnglert
  • Diapositiva 1 - QNET

    Diapositiva 1 - QNET

    Se funda la Central Unitaria de Trabajadores (CUT). Su primer presidente es el dirigente sindical Clotario Blest, esta es la organización gremial más importante proyectada por dirigentes obreros hasta el día de hoy. Se anuncia la disolución del MEMCH, movimiento...